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the same problem in a previous study.

Acccfslon For
"- [9

'V DLI-'": .

,D1 i .i:"-' : LI



NONLOCAL FREE ENERGY DENSITY FUNCTIONAL THEORY APPLIED TO

THE ELECTRICAL DOUBLE LAYER. I. SYMMETRICAL ELECTROLYTES

Zixiang Tang, L. Mier-y-Teran*. H. T. Davis, L. E. Scriven, and H. S. White

Department of Chemical Engineering and Materials Science

University of Minnesota

421 Washington Avenue S.E.

Minneapolis, Minnesota 55455

U.S.A.

Runing Title: Electrical Double Layer

* On sabbatical leave from Departamento de Fisica, Universidad Autonoma Metropolitana-

Iztapalapa, Apartado Postal 55-534, 09340 Mexico, D. F., Mexico.

1



ABSTRACT

A theoretical study of the restricted primitive model of the electrical double layer

using a free energy density functional theory is presented. The ion-ion hard-core repulsive

contribution to the free energy is incorporated by a nonlocal excess hard-sphere free energy

density functional. The electrostatic part of the ion-ion direct correlation function of the

inhomogeneous electrolyte in the interfacial region is approximated by that of the homo-

geneous bulk electrolyte. The generalized van der Waals model and the Tarazona model

are used to construct the respective excess hard-sphere free energy density functionals

and compared with each other. Each model requires as input a hard-sphere equation of

state. The Carnahan-Staring equation of state is chosen. The theory predicts correctly

the layering effect of the counterions and the charge inversion phenomenon. The results

for 1:1 and 2:2 electrolytes agree well with the Monte Carlo simulations. The Tarazona

model gives results in closer agreement with Monte Carlo data than does the generalized

van der Waals model. The diffuse layer potentials predicted by the Tarazona model are

not as accurate as those by the generalized hard-rod model which has been applied to the

same problem in a previous study.
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I. INTRODUCTION

The electrical 'double layer is the inhoinogeneous region of an electrolyte near a

charged surface. Its most distinguishing feature is the charge separation in the electrolyte

in response to the electric field produced by the surface charges. Understanding the elec-

trical double layer is fundamental to a variety of phenomena in electrochemical, colloid.

and biological sciences.

Because of many complications present in physical systems containing the electrical

double layers, theoretical studies have concentrated largely on some simplified models. The

advantage in using a simplified model is that it allows an unambiguous test of a theory

against the computer simulations for the same model. Among these models, the most

widely studied one is the restricted primitive model (RPM), in which the electrolyte is

represented by a fluid of charged hard spheres with diameter d and point charges q, at

their centers, the solvent by a continuum with an isotropic dielectric constant e, and the

electrode by an infinite planar hard wall with a uniform surface charge density o,. The

electrode surface is also assumed to be impenetrable. The RPM of the electrical double

layer is completely defined once the system parameters e, o, d, {q,}, the ion number

densities in the bulk electrolyte {no}, and the temperature T are specified.

Studies of the RPM of the electrical double layer began with the pioneering works of

Gouy [1] and Chapman [2] based on the Poisson-Boltzmann equation, in which the ions

were treated as point charges so that the hard-core repulsions between the ions and between

the ion and the charged wall were not included. A modification was made later by Stern

[3] to incorporate the ionic size effects in such a way that all ions were allowed to approach

only up to a closest distance from the charged surface, whereas the ion-ion interactions

were still treated by the point charge model. This was called the modified Gouy-Chapman

(MGC) theory [1-31. The MGC theory is quantitatively accurate for weakly coupled (say,

small o and q,,) systems at low densities, in which case the effects of finite ion sizes are not

important, but fails to represent, even qualitatively, highly coupled systems or high density
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ones. Qualitatively, there are two fundamentally important phenomena present in the ion

density profiles of the RPM of the electrical double layer as revealed by the Monte Carlo

(MC) simulations of,Torrie and Valleau [4]: the layering effect of the counterions. and the

charge inversion. Firstly, for 1:1 electrolytes near a highly charged surface the counterion

density profile is no longer monotone but shows a second layer next to the inner monolayer.

Secondly, for 1:1 and 2:2 electrolytes at high concentrations and high surface charges there

is charge inversion, i.e., the coion density exceeds the counterion density within certain

parts of the interfacial region. The MGC theory, however, always predicts monotonic

profiles of the ion density [5]. Accordingly, various efforts have been directed toward

interpreting of the layering and the charge inversion effects through better treatments of

both the short-ranged hard-sphere interaction and the long-ranged Coulombic interaction

in the electrical double layer [5,6]. These efforts include works based on the modified

Poisson-Boltzmann (MPB), the Yvon-Born-Green (YBG), and the Ornstein-Zernike (OZ)

equations. There are also works based on free energy density functional theories. We

sketch in Table I these different theories of the RPM of the electrical double layer. For

detailed references, see the recent reviews [5,61 of this subject and a recent paper by some

of the present authors [19].

The MPB theory is based on the Kirkwood hierarchy and requires a closure which

connects the density distribution functions and the mean electrostatic potential function.

Computations based on this theory have proved efficient [5]. The best and most recent

version of the MPB theory is the MPB5 theory of Outhwaite and Bhuiyan [7], which is

successful for 1:1 electrolytes but not for 2:1 and 2:2 electrolytes at similar densities and

temperatures. The YBG theory has a conspicuous feature: it satisfies the contact theorem

exactly. For closure, this theory requires approximations to the pair distribution function.

A promising nonlocal closure has been proposed recently [8]. The results of the YBG

theory are good at high concentrations but poor for dilute solutions; this is believed to

result from numerical difficulties when the density profiles become very long-ranged in the

low concentration limit [8]. The OZ equation together with the mean spherical approxi-

mation (MSA) or the hypernetted-chain (HNC) approximation underlies the MSA/MSA.
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the HNC/MSA, and the HNC/HNC theories, of which the HNC/MSA is the best. In the

various versions of this theory, the ion-ion direct correlation function of the inhomogeneous

electrolyte in the interface is approximated by that of the homogeneous bulk electrolyte.

Numerical predictions from the HNC theories require large computational efforts, but these

theories have the advantage that they can be generalized easily.

Two recent works on the extensions of the HNC theories of the RPM of the electrical

double layer warrant mention. One is the local HNC (HNCL) and the local MSA (MSAL)

approximations suggested by Forstmann et al. [9], who derived an integral equation for the

density distribution functions from a density functional theory, in which the nonuniform

Ornstein-Zernike direct correlation function should be approximated. The essence of these

approximations is that the exact ion-ion direct correlation function of the inhomogeneous

electrolytes is replaced locally by either the HNC or the MSA solutions to the direct

correlation functions of some homogeneous non-neutral electrolytes. These non-neutral

electrolytes are chosen in such a way that they have the ion compositions corresponding

respectively to those found locally in different regions of the double layer [9]. These theories

give good results, but an unsatisfactory feature of these approaches is that they have

one undetermined parameter which must be fitted to the MC simulations. The other

recent extension of the HNC theories is that of Plischke and Henderson [10], who solved

the inhomogeneous OZ equation in the HNC and the MSA closures simultaneously with

the Lovett-Mou-Buff-Wertheim equation for the ionic density profiles (OZ/LMBW). The

OZ/LMBW theory gives the most accurate predictions currently available. However, its

numerical implementation involves rather large computing time and considerable storage.

In summary, all the theories mentioned above succeed quite well for weakly coupled systems

at low deroities, whereas only the YBG, the HNCL and MSAL, and the OZ/LMBW

theories predict correctly the qualitative behavior of highly coupled systems at moderate

or high densities. Quantitative agreement with the MC results is accomplished without

adjustable parameters only by the OZ/LMBW theory.

In contrast with the approaches mentioned above, there are far fewer investigations
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based on the density functional theories. The essence of the density functional theory is to

construct the Helmholtz free energy as a functional of the particle density and minimize

the free energy to obtain an expression for the equilibrium density distribution. In the

currently tractable versions of this approach, the contribution of particle-particle pair

interactions to the free energy are separated into hard-sphere and electrostatic parts. The

hard-core repulsion between the ions is represented by a nonlocal generic free energy density

functional for inhomogeneous hard-sphere fluids, which was first proposed by Percus [11]

and generalized to fluid mixtures by Vanderlick et al. [12]. Several models of such a

nonlocal free energy density functional have evolved in recent years. These include the

generalized van der Waals (GVDW) model [13], the Tarazona (TRZ) model [14], and the

generalized hard-rod model (GHRM) [15,161. Each of these models requires as input a

hard-sphere equation of state. A comparison of these models with applications to hard

sphere fluids confined between hard walls has been reported [17]. The first application of

the density functional theory to the RPM of the electrical double layer was the work by

Boyle et al. [18], in which the GVDW model together with the Clausius equation of state

was used and the electrostatic interaction between the ions was treated in the mean field

approximation. The results obtained compare somewhat poorly with the MC simulations.

This can be attributed in part to two facts: the Clausius equation of state does not account

well for the behavior of a hard sphere fluid; and the mean field approximation is too crude

to represent accurately the electrostatic correlations. Recently, Mier-y-Teran et al. [19]

have applied the GHRM together with the Carnahan-Starling equation of state to the same

problem. An improved treatment of the electrostatic interaction was used, in which the

electrostatic part of the ion-ion direct correlation function of the inhomogeneous electrolyte

in the interfacial region was approximated by that of the homogeneous bulk electrolyte.

This electrostatic correlation consists of a long-ranged mean field part and a short-ranged

residual part. Also, the volume averaging technique of Ref. 18 as it applied to regions very

close to the charged surface, which is now believed inappropriate, has been eliminated.

The GHRM has an accuracy approaching in some cases that of the OZ/LMBW theory,

which is the best available, but requires only a small fraction of the computing time used

to solve the OZ/LMBW theory. This is in general an attractive feature of the density

6



functional theory, especially in the light of the eventual goal of treating the solvent as a

molecular fluid instead of a dielectric continuum.

It has been shown that the TRZ model is, overall, a better approximation for the

inhomogeneous hard-sphere fluids than the GHRM [17], and that the GHRM predicts

qualitatively correct results for the RPM of the electrical double layer although there

are small quantitative differences from the MC data [19]. A next logical step in the

development of density functional theory is to examine the accuracy of the TRZ model in

applications to the RPM of the electrical double layer. The purpose of this paper is to

carry out such an examination.

In section II, we use the nonlocal free energy density functional theory to derive an

integral equation for the ion density distribution functions of the RPM of the electrical

double layer. We extend the TRZ model to mixtures of hard spheres of the same size and

then apply it together with the Carnahan-Starling equation of state to construct the excess

hard-sphere free energy functional. Because of its simplicity, the GVDW mode!, which is

in fact the lowest order approximation to the TRZ model, is also examined. The approach

we use is the same as that in Ref. 19. The results for the ion density profiles and the

mean electrostatic potential profiles are reported in Sec. III, and compared with the MC

simulations [4] and the results of other theories, especially those of Ref. 19. In Sec. IV, we

conclude with a brief summary and suggest improvements on the present approach. We

also mention the extensions of the density functional theory to more realistic models of

the electrical double layer.

II. THEORY

A general starting point for the treatment of the inhomogeneous fluids is the density

functional theory in which the Helmholtz free energy F is expressed as a functional of the

particle density distribution n(r) (20,21. For a system of charged particles of different
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kinds a (a = 1, 2,..., m) at fixed temperature T, volume, the external field of potentials

v,(r), and the chemical potentials P,, the equilibrium particle density distribution is that

which minimizes the grand potential S1 of the system where

= F({n}) - f d3rI n.(r). (2.1)

The equilibrium particle density distribution is thus a solution to the following Euler-

Lagrange equation resulting from the minimization of f2({n}) with respect to nc,(r):

6f ({n}) - 6F({n})6n(r) - n0(r) =. (2.2)

The Helmholtz free energy density functional of the system mentioned above is as-

sumed to be-written as

F({n}) = UZ d3rn,(r) [In(A 3z 0 (r))
a (2.3)

+Z d3rn(r)vo,(r) - 46({n}),(23

where k is Boltzmann's constant and A. denotes the de Broglie wavelength of particles

of species a. The first term on the right side of Eq. (2.3) is the ideal gas contribution

to the free energy. The second term corresponds to the external field contribution. The

third term, the functional -0({n}), represents the contributions from the ion-ion pair in-

teractions. The functional 0({n}) is a unique functional of particle density in a specific

system and its derivatives with respect to density define a hierarchy of direct correla-

tion functions [20,21]. Of particular importance, the nonuniform Ornstein-Zernike direct

correlation function c,6(r, r') is given by

1 62€({n}) 24

c,(r, r') = kT n(r)6n(r') (2.4)

If we have some means of evaluating the direct correlation functions over a range of nonuni-

form densities, we can obtain 0({n}) by functional integrations of the direct correlation

functions with respect to density.
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Although 0(n}) does not depend on the specific choice of integration path [20], it

is most convenient to integrate along a linear density path from some initial density n,(r)

to the final density n,(r),

no( r;A) = n%(r) + A [na(r) - rz~(r)] (2.5)

where A is a parameter varying between 0 and 1. Such an integration can be further

simplified if the initial density is chosen to be zero, n,(r) = 0. Because the particle-particle

pair interactions become negligible at sufficiently low density, we have 0( {n'}) = 0 in this

case [211. This yields

= kT f d3 r d3r'n(r)ng(r') d,\ d,' c,,(r, r'; V). (2.6)

A reference (initial) state different from that used in Ref. 19 has been chosen here in

the expression of the density functional (b, but the equivalence of the two approaches is

guaranteed by ,he uniqueness of 0.

The free energy density functional then becomes

F({n}) = kTY'd 3r n,(r) [li(A' n.(r)) - 1]

+ J d r n,(r)v,(r) (2.7)
Or

U dT d3r d 3r'n,,(r)ng(r ' ) 1 dA dA'c Ar')).

It bears emphasizing that in this paper we employ the Helmholtz free energy density

functional rather than the grand potential functional which was used in Ref. 19. These

two functionals are simply related to each other by Eq. (2.1). No approximations have

been made so far concerning the physical system we are going to investigate, and in this

sense Eq. (2.7) is exact.

For an inhomogeneous RPM electrolyte with both hard-core repulsions and Coulom-

bic interactions, the nonuniform Ornstein-Zernike direct correlation function ca3(r, r') is
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not in general known. But it can be decomposed into three parts:

(rr') + A, C + (r, r'). (2.8)CI r ekTIr - r'I

The first term on the right side of Eq.(2.8), c.(r,r'), is the direct correlation function

of a fluid of neutral hard spheres due solely to hard-core repulsion, which is discussed in

more detail in what follows. The second term represents the ionic correlation due solely

to the Coulombic interaction between charged particles. Here we have made an additional

assumption about the RPM of the electrical double layer: the electrode surface is taken

as having the same dielectric constant e as has the solvent. In this case there are no im-

age effects arising from the polarizations of the surface, and the electrostatic interaction

between ions remains in the form of central force as expressed by Eq.(2.8). An additional

contribution in the same equation, Ac,(r, r-), can be interpreted in some sense as the re-

suits of the cross-correlations between the Coulombic and the hard-sphere interactions. To

proceed further we must make some kinds of approximations for ch, (r,r') and Aca(r. r').

We choose here to approximate Ac 0 (r, r') of the inhomogeneous electrolyte in the inter-

face by that of the homogeneous neutral bulk electrolyte, Acc6(lr - r'j). The latter is

given by the analytical solution to the OZ equation when the MSA closure is used [22].

The explicit expression for Aca,(Ir - r'I) is given in Ref. 19.

On the other hand, instead of making any kind of explicit approximation to the

hard-sphere correlation function c, (r, r'), we introduce an excess free energy density

functional Fece"e({n}) into our formalism to incorporate the hard-core repulsion between

the ions. F'e"aa({n}) is essentially the excess free energy of a hard sphere fluid over

the ideal gas contribution accounting for the finite size of the particles. This excess part

of the free energy is extremly important in determining the structure of Coulombic and

non-Coulombic inhomogeneous fluids provided there is short-ranged hard-core repulsion

between the particles.

On the basis of all the foregoing, the free energy density functional can be rewritten
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as

a a

F~fnj) kT d 3d r n,,(r) [in (A 3n,,(r)) - 1]

/i

+ Fexcess(I{n).

Here the external field potential v.(r) in the planar electrical double layer can be shown

to be [5]

v,(r) = -21rq~oaxle + v hS(X), (2.10)

where x =_r - is the ion's distance to the wall,

V hs(X) = 00, x <d2
(2.11)

= 0, x >d/2.

As an intuitive generalization of the exact theory of the inhomnogeneous hard-rod

fluids, the excess hard-sphere free energy functional Fezce({n}) suggested by Percus is in

general a nonlocal. density functional and can be expressed in terms of two coarse-grained

densities, ft.(r) and +(r), which are themselves at each point density functionals of the

local density distribution n ,"(r):

FeCeM( n}) . d3 r l(r)Yo ( t (r)), (2.12)

where Fo(n) is the excess free energy per particle of a homogeneous hard sphere fluid of

density n, and its expression can be derived from the hard-sphere equation of state [10, 11].

The physical interpretation of Eq.(2.12) is that the excess free energy contributed from

a unit volume around r is the product of two quantities: the average number density of

particles, fiL'(r), and the average excess free energy per particle which is simply replaced

by the excess free energy per particle of a homogeneous hard-sphere fluid of the average
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density fi(r). These two average densities (or coarse-grained densities) are not necessarily

identical.

We choose here to use the Carnahan-Starling equation of state in our calculations.

The corresponding excess hard-sphere free energy per particle is

Fo(n) U y(4 - 3y)(2.13)
(I _y)

2

where y - 7rnd3 /6. The expression for Fo(n) retains its simple form as in Eq. (2.13) when

extended to mixtures of hard spheres of equal size if we identify n with the total number

density of particles of all species, i.e., n = "a n.

In the expression for the excess hard-sphere free energy density functional, Eq.(2.12),

the coarse-grained densities, fic(r) and i'(r), are the weighted-averages of the local density

over certain spatial domains whose sizes are comparable to the particle volumes. This is

_(r) J d r' n,(r')v,(r - r'; {n}), (2.14)

J(r d3r' n,(r')r,(r - r'; {n}), (2.15)

where the weighting functions, v and r, are required to satisfy the normalization conditions

f d 3 r' v(r - r'; I{n}) =- Jd 3r'I7-(r - r'; {n}) = 1, (2.16)

since these coarse-grained densities both reduce to the bulk density in the homogeneous

fluid limit.

In order to complete the construction of the excess free energy functional, prescrip-

tions for the weighting functions must be specified. Different prescriptions define different

models in free energy density functional theory. The simplest criterion used to determine

the "optimal" weighting functions, v and r, is that they should reproduce the known re-

sults of the hard-sphere fluids in the uniform density limit. For example, we can require

both the Ornstein-Zernike direct correlation function and its first derivative with respect
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to the density to be reproduced [11]. The first free energy density functional model which

incorporated coarse-grained densities was the generalized van der Waals (GVDW) model

of Nordholm and co-workers [13]. The weighting functions of this modei are

V,(r - r'; {n}) = 6(r - r'), (2.17)

and

r.(r - r'; f{n}) = .3 Ir - r'l < d,
4ird3 

1  (2.18)
=0, Ir-r'l > d,

where 6(r) is the Dirac delta function. The GVDW theory was found to predict physically

unrealistic behavior of inhomogeneous hard sphere fluids at high densities [14,17], and

unsatisfactory results in the case of the RPM of the electrical double layer [18].

There is another free energy density functional model, the generalized hard-rod model

(GHRM), proposed by Robledo and Varea [151, and by Fischer and Heinbuch [16]. The

GHRM is the three-dimensional generalization of the one-dimensional hard-rod model and

is defined by

V,(r- r'; {n}) 4(d/2)2  -Ir- r'), (2.19)

and
,r(r- ' jj)= 3 Ir - r'l < d/2,
- r'; {n}) = 4r(d/2)3  r (2.20)

= 0, Ir - r'l > d/2,

The counterparts of Eqs.(2.19) and (2.20) are exact in the one-dimensional case. It has been

shown that the GHRM predicted qualitatively correct but quantitatively poor results for

hard-sphere fluids confined between two hard walls [17]. Yet the results of the GHRM for

the RPM of the electrical double layer were found to be satisfactory, and even quantitatively

accurate in many cases [19].

Improvements on the GVDW theory have been made by Tarazona [14] through in-

troducing a density-dependent weighting function r(r - r'; {n}). The other weighting

function v(r - r; {n}), however, has remained a Dirac delta function. In the TRZ model,
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r is assumed to expand in a power series in the coarse-grained density n', and the series

is truncated at the third term:

r(r - r'; {n}) : w()(Ir - r'l) + w(i)(Ir - r'J)i"(r) + w(2)(Ir - r'l)fi(r)2, (2.21)

where w0')(r) (i = 0,1,2) are density-independent coefficients. The coefficients of the

zeroth- and first-order terms, w(°)(r) and w( 1)(r), were determined by comparison with

the virial expansion of the direct correlation function of a uniform hard sphere fluid. The

coefficient of the second-order term, w( 2)(r), was calculated through an empirical fit to

the Percus-Yevick approximation of the direct correlation function [14]. In addition, the

normalization condition for r(r - r'; {n}), Eq. (2.16), implies that w(0 )(r) is normalized.

and that w( 1)(r) and w(2)(r) have zero integrals:

d3r w(')(Irl) = 1, = 0,J (2.22)

= 0, i=1,2.

The coefficients w(')(r) obtained in this manner axe optimized. The results are

lwc° (r) = --- r < di
47rd 3 ' d(2.23a)

-0, r > d,

w( 1)(r) = 0.475 - 0.648 (r)+ 0.113 ()r < d,

= 0.288 - 0.924 + 0.764 (r)- 0.187 (r)2 d <r < 2d, (2.23b)

0, r > 2d,

w(2)(r)= d ["--3) +r (r)] r<d,

144 d d(2.23c)

=0, r>d.

One realizes immediately that the GVDW model is just the zeroth order approximation

to the TRZ model by comparing Eqs.(2.18) and (2.23). The TRZ model combined with

the Carnahan-Starling equation of state was found to predict the best results among those

three models we discussed for hard-sphere fluids confined between two hard walls [17].

Extending the TRZ model to mixtures of hard spheres with arbitary size ratio involves

large complexities [23]; the power series expansion of the weighting function r is thus
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truncated at the linear term in density as has been done in Ref. 23. In the case of mixtures

of hard spheres with the same size, however, the TRZ model is much easier to be extended.

Because only the particle diameter determines the finite size effects, regardless of the other

parameters such as charge, it is reasonable to assume that for mixtures of hard spheres of

equal size the weighting functions, va(r - r'; {n}) and rT(r - r'; {n}), are independent of

the particle species a and take the forms

V,(r - r'; {n}) = 6(r - r'), (2.24)

and
rTCr - r'; {n}) = w(°)(Jr - r'j) + wci)(Ir - r'l) f (r)

(2) (2.23)
+ w(2)(Ir - r'I) E (

where the coefficients w(')(r) are given by Eq. (2.23). Eq. (2.25) is essentially the same

as Eq. (2.21) except that the coarse-grained density fit (r) is now identified with the total

coarse-grained density of particles of all species, E. ii(r). It follows from Eqs. (2.15) and

(2.25) that

'(r) = f)(r) + + (r)),(r) 2, (2.26)

where

SJ = d3 r'n,(r')wC')(jr - r'j), i = 0,1,2, (2.27)

and

= (2.28)

Summing over all the equations of (2.26) for all species C yields

fir(r) = fl( 0)(r) + ?(l)(r)rl?(r) + f(2)(r)fi'(r) 2, (2.29)

where

~()r =Z~ (r). (2.30)
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Eq. (2. 29) can then be solved for fiT (r) to give

fit (r) = 2Ya 0)(r) - ft()(r)) + [(1 - t0)(r)) - 4A(O)(r)fz(2)(r), (2.31)

Eqs. (2.26) and (2.31) together determine the coarse-grained density fi(r), and it is clear

that they reduce to Taxazona's results [13] in the case of single-component hard sphere

svstem.

It is worthwhile deriving the functional derivatives of the coarse-grained densities

with respect to the local density for the TRZ model. The results are

bf!t(r') = - r), (2.32)
r; ((r)

6fir(r ') _ (r' - r; t(r'))

6n,,(r) - 1 - n(l)(r') - 2f( 2)(r')fV(r')' (2.33)

and
6 (r') _n(r') -[b(1)(r')6,$ - f!

6na(r) =  n a(r) 1-- ---. 34

- 2nr(r') [j(2)(r')6 - ft(2)(r')] , (2.34)

where 6,g is the Kronecker delta function.

Combining together all the contributions to the Helmholtz free energy density func-

tional F({n}) in Eq.(2.9) yields
F({n}) = kTr n3r ,o(r) [In (A 3n(r)) - 1]

+ d 3r n,(r)va(r

+ I/d3r ni(r)Fo(fr(r)) (2.35)

+ d3 r d3 r' nc(r)ng(r') -rg

- kT 3 d3rd3 r'n,(r)nd(r')Ac,,(Ir - r'l).
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The chemical potential of ions of species a in the electrical double layer is computed from

Eq. (2.35) as the functional derivative of F with respect to the density of species a. This

gives

I_ = kTln (An,(r)) + q ,,z(r) + vha(r)

+ d'r' Yo (f!(r'))

nMr(r') 6.Fo(n"(r')) (2.36)
+ d3 r' f (r') 6n(r)

- kT d3r' n(r'),c.(Ir - r'j),

where w(r) is the mean electrostatic potential defined by

V,(r) = vc() +d3 ' qon.(r) (2.37)

Poisson's equation can be solved with the appropriate boundary conditions for the planar

electrical double layer to give the mean electrostatic potential in terms of the ion density

distribution functions [5]. The result is

OW L jf dx'(z - z') E qn ,(z'). (2.38)

Evaluating the chemical potential in the coexisting homogeneous bulk electrolyte and

combining this with Eq. (2.36), we obtain an integral equation for n,(r) as a function of

temperature and bulk ion densities n° .Because of the planar symmetry of the problem, the

ion densities vary only in the direction normal to the surface. Integrating v,(r - r'; {n)),

r,(r - r'; {n}), and Acag(Ir - r'j) over the directions parallel to the wall, i.e., the y-z
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plane, leads to the one-dimensional integral equation for n,(x):

n,(x) {q?P(X)

b ~t~, , -o , ° ., .,, ,] ( 2 .3 9 a )1 d i'(x') [E -1
kT af Iny,(x) 5,()')

+ n o(no + f dx' (n3(x') - n3)Ac8,(x- x'),

kT a8nO

for x > d/2, and

n,(X) = 0, (2.39b)

for x < d/2, where n' is the ion number density in the bulk phase and no E = no

III. RESULTS

a

The restricted primitive model of the electrical double layer, Eq. (2.39), was solved

by means of finite element techniques described elsewhere [241 to obtain the equilibrium

ion density distributions of 1:1 and 2:2 electrolytes. The mean electrostatic potential

function then followed immediately from Eq. (2.38). In our method, the domain of interest,

d/2 < x < L (L is the cutoff value for all the integrals in Eq. (2.39)), was discretized

uniformly and the trapezoidal rule was used to perform all the integrations. Eq. (2.39)

then becomes a system of nonlinear algebraic equations for the nodal values of the reduced

density g0, = n,(xj)/n ° . We used Newton's iterative method to solve for the unknowns.

The iterations continued until the Euclidean norm of the updates was less than 10"0:

Z:.(g() -(n-I) 2] ,I of gai < 10_10,(31

J -< 1 Oo (3.1)

where N is the number of nodes in the domain. Three to seven iterations were usually

required to converge to a solution.
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A family of solutions was composed of several steps in the surface charge density o at

a constant concentration c. For the lowest a, the MGC results was used as the initial guess

to the solution, whereas for the higher a, the initialization was chosen by the method of

parametric continuation [251. The domain length we used in the calculations depended on

the concentration and the valence type of the bulk electrolyte; approximately 10 times of

the Debye screening length x-' (tc' = (4ir/ekT) E. n'q2 ) was usually used. The criterion

employed to determine the upper limit of the domain, L, is that the ion densities at x > L

should not differ from their bulk values by more than 0.01%. The number of nodes N also

varied from one concentration to another. A typical value of N was 250, which was found

adequate in the sense that further refinement did not change the solution by more than

1%. With 241 nodes, for example, our program required less than 40s of Cray-2 CPU time

to obtain a solution.

The accuracy of the numerical method can be measured by the degree to which the

overall electroneutrality condition of the interfacial region,

L ''
dx' ~qarz. + a =')+0,(3.2)

is satisfied. Eq. (3.2) was satisfied to at least five significant figures, except at the lowest

concentrations considered (0.01M for 1:1 electrolytes and 0.05M for 2:2 electrolytes), where

it was satisfied only to four significant figures.

We used the same conditions of calculations as those of the MC simulations (4]: d is

4.25A, e is 78.5, and T is 298K. The plasma parameter is r° = e2 /ekTd = 1.6809 in this

case. Dimensionless quantities were used for convenience as follows. The length is in units

of d, the surface charge density in units of e/d 2 , a' = ad2 /e, and the mean electrostatic

potential in units of kT/e, 0k(x) = eP(x)/kT, where e is the magnitude of the electronic

charge.

One of the most important physical quantities in the electrical double layer is the

diffuse layer potential, 0(0), which is the potential difference between the closest approach
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to the charged surface, d/2, and infinity. It follows from Eq. (2.38) that

= 1r0 d'x' qn,(x'). (3.3)

The position of the charged surface is shifted to x = -d/2 in Eq. (3.3) and in all the results

to be presented hereinafter. The diffuse layer potential can be interpreted as a measure of

the thickness of the electrical double layer region in which the total charge JZ q na(x) is

locally non-zero.

1. 1:1 electrolytes

We made calculations for 1:1 electrolytes at concentrations c ranging from 0.01 to 2M

and surface charge densities a* from 0.05 to 0.9. In Table II we report the dimensionless

diffuse layer potential 0*(0) calculated from the GVDW and the TRZ models, and present

the MC data [4] and the results from the GHRM [19] for comparison. We also list the results

of the MGC, MPB5 [7], and YBG [8] theories, and the OZ/LMBW results by Plischke and

Henderson [10]. At low concentrations and low surface charge densities, the MPB5 theory

gives values of ?P(0) which agree best with the MC results. The MPB5 results for high c

or a* are not available. On the other hand, the YBG, the OZ/LMBW, and the density

functional theory all give results of comparable accuracies at the concentrations and charge

densities we investigated.

In order to compare the three different models of the free energy density functional

theory, the values of 0*(0) of these models as a function of o* are plotted in Fig. 1. At

low concentrations and surface charge densities, our results differ from the MC simulations

by only a few percent, which is about the level of statistical uncertainty in the MC data.

At high concentrations and surface charge densities, however, our values of 0*(0) are con-

sistently lower than the MC results. In this case the TRZ model is obviously superior to

the GVDW model but poorer than the GHRM; the differences between the results and

the MC values are 1-5%, 10-20%, and 20-30% for the GHRM, the TRZ model, and the

GVDW model, respectively. This is contrary to the finding [17] that the TRZ model is

in general a better approximation for inhomogeneous hard-sphere fluids than the GHRM.
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and confirms the suggestion [19] that there is some kind of fortunate cancellation of er-

rors when the GHRIM is combined with the MSA solution to the electrostatic correlation

function of the homogeneous bulk electrolytes. We should expect better results from the

TRZ model than from the GHRM when an improved treatment of the ion-ion electrostatic

interaction is used, since the main approximation in our calculations is the replacement of

the electrostatic part of the direct correlation function of the locally non-neutral inhomo-

geneous electrolyte by that of the homogeneous neutral bulk electrolyte. When a neutral

homogeneous electrolyte is brought next to a positively charged surface, for example, there

is a surplus of the anions in the interface. The electrolyte in this region is thus non-neutral

and has different electrostatic correlations from those of a neutral electrolyte. It may be

possible to improve our results by using the MSA solution to the electrostatic correlation

function of the homogeneous but locally non-neutral electrolytes which have the ion com-

positions corresponding respectively to those found locally in the double layer region. This

kind of calculation was reported by Forstmann and coworkers in the so-called local MSA

(MSAL) approach [9].

In Figs. 2 and 3 we present the reduced ion density n,(x)/n' and the dimension-

less mean electrostatic potential 0I(x) = eP(x)/kT profiles for c=0.1M and a'=0.3. At

this relatively low concentration and surface charge density, the profiles predicted by the

GVDW and the TRZ models are almost indistinguishable (the difference is smaller than

5%) and in good agreement with the MC predictions (10% high). The density and the

potential profiles are monotonic in this case.

One of the most distinctive features of the density profiles of the electrical double

layer is the layering phenomenon of the counterions near the electrode plate at sufficiently

high surface charges. The layering effect is caused by the hard-core exclusion interplaying

with the purely electrostatic response of the ions to the electric field. We show in Figs. 4,

5, and 6 the ion density profiles for 1:1 electrolytes at c=1M and a*=0.42, 0.55, and 0.7,

respectively. The development of the second layer of the counterions near x = d is plain

as a* increases. We see in Fig. 6 that both the TRZ and the GVDW models predict
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approximately the correct position of the second peak. In the GHRM, however, the peak

is shifted closer to the wall. The magnitude of the second layer is not predicted well by any

of the three models; it is severely underestimated by the GVDW model and overestimated

by the GHRM.

The mean electrostatic potential profile in the same conditions as in Fig. 6 is pie ted

in Fig. 7. In this case, the MC simulations seem to predict a minimum in the potential,

but the mininum is too shallow to be resolved from the statistical noise in the data. Our

profiles are still monotonic and the deviation from the MC results is the largest at xr = 0,

that is, 15% for the TRZ model and 35% for the GVDW model.

At even higher concentrations (c=2M, for example), the MC simulations begin to

show the interesting effect of charge inversion, i.e., the coion density obviously exceeds

the counterion density within a certain region of the interface. The result is essentially a

dipole layer. In Fig. 8 we present the ion density profiles for c=2M and o'=0.396. Charge

inversion is seen in our profiles between x = 1.5d and 3d approximately. In this case, the

TRZ model predicts results which differ from the MC simulations by no more than 10%.

As a direct consequence of the charge inversion effect, the corresponding mean electrostatic

potential profile shown in Fig. 9 presentes an oscillation in the potential. The minimum

predicted by the TRZ model is -0.166, which is approximately 0.14 more negative than

that in the MC profile. Compared with the MC results, the position of our minimum is

shifted toward the charged wall.

2. 2:2 electrolytes

The 2:2 electrolyte is known to be a more stringent test of the electrical double layer

theory because the ionic interactions are much stronger than those in the 1:1 electrolyte.

We computed the density and the mean electrostatic potential profiles for c=0.05 and

0.5M, and a* varying from 0.025 to 0.4. Some selected values of t(0) are also displayed

in Table II to compare with the MC data and results of other theories. Again, we plot

0*(0) as a function of a* in Fig. 10. Our results show a distinct maximum in the diffuse
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layer potential, as predicted by the MC simulations; but they agree only qualitatively with

the MC data. The disagreement is as high as 14% at 0.05M and 28% at 0.5M. The TRZ

and the GVDW models again give indistinguishable results at low a*.

The density profiles of a 2:2 electrolyte at c=0.5M and '=0.1704 are shown in

Fig. 11. There is charge inversion at this moderate concentration and surface charge

density. It appears that charge inversion is easier to get with 2:2 electrolytes than with

1:1 electrolytes because of the stronger interactions between the ions and between the ion

and the charged surface in divalent electrolytes.

The mean electrostatic potential profile at the same conditions as in Fig. 11 is pre-

sented in Fig. 12. The potential is oscillatory with a minimum of -0.22 at x = 0.5d

approximate',y. The minimum in our profile is 18% lower than that in the M'vC results.

IV. SUMMARY

Free energy density functional theory has been applied to the restricted primitive

model (RPM) of the electrical double layer. The hard-core repulsive contribution to the free

energy was incorporated by a nonlocal excess hard-sphere free energy density functional

constructed on the generalized van der Waals (GVDW) model or the Ta.razona (TRZ)

model. The electrostatic part of the ion-ion correlation function of the electrolyte in the

interfacial region was approximated by the mean spherical approximation (MSA) to that

of the homogeneous bulk neutral electrolytes. For each model, the calculations required a

hard-sphere equation of state as input. The Carnahan-Starling equation of state was used.

The free energy density functional theory predicts both the ion density and the

mean electrostatic potential profiles that are in good agreement with those of the Monte

Carlo (MC) simulations. The theory iq able to predict correctly the layering effect of

the counterions near the highly charged surface and the charge inversion phenomenon at
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sufficiently high concentrations and surface charge densities. At low concentrations and

surface charge densities, the GVDW and the TRZ models give almost identical results.

As either the concentration or the surface charge density increases, the TRZ model is

obviously superior to the GVDW model. The diffuse layer potentials predicted by the

TRZ model are poorer than those by the generalized hard-rod model (GHRM) reported

in Ref. 19. We expect that the theory will be improved by using the MSA solution to the

electrostatic correlation function of the homogeneous non-neutral electrolytes which have

the same ion compositions, respectively, as those found locally in the interface. This is a

matter for future investigations.

The relative accuracy of the different theories of the RPM of the electrical double

layer is mainly of theoretical interest [6], since the RPM is such a greatly simplified model.

Of far greater relevance is to extend these different theories to more realistic models that

take into account more and more physical features of the electrical double layer. These

features include the solvent effects (electrostriction, dielectric saturation), the ion effects

(ion polarizability, ion-concentration dependence of the solvent dielectric constant), the

asymmetric electrolytes (size asymmetry, charge asymmetry), and the surface properties

(discrete charge distributions, image forces, non-planar surfaces), etc. The simplest model

which incorporates the solvent effects is the hard sphere ion-dipole mixtures (HSIDM)

model [5,6], in which the solvent is represented as a fluid of hard spheres with embedded

point dipoles. Although this is still a crude model of an electrolyte, it is certainly an

improvement over the primitive model. The extension of the density functional theory to

the HSIDM model is straightforward. It requires an extra term to incorporate the finite

size effects of the solvent molecules and two extra terms to include the ion-dipole and

dipole-dipole interactions in the expression of the free energy density functional. We are

currently working on this model.
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FIGURE CAPTIONS

Fig. 1 Dimensionless' diffuse layer potential, ew(O)/kT, as a function of the surface charge

density, ad2/e, for 1:1 electrolytes at c=0.01, 0.1, 1, and 2M. The solid curves, the

dot curves and the dashed curves are the results of the TRZ, the GVDW and the

GHRM models, respectively. The dots and the squares represent the MC data.

Fig. 2 Reduced ion density profiles, n(x)/n0 , for a 1:1 electrolyte at c = 0.1M and a* = 0.3.

The solid curves, the dot curves and the dashed curves are the results of the TRZ.

the GVDW and the GHRM models, respectively. The dots represent the MC results.

The charged wall is at z = -o.5d.

Fig. 3 Dimensionless mean electrostatic potential profile, ev(x)/kT, for a 1:1 electrolyte at

c = O.1M and a* = 0.3. All symbols as in Fig. 2.

Fig. 4 Reduced ion density profiles, n(x)/n', for a 1:1 electrolyte at c = 1M and a' = 0.42.

All symbols as in Fig. 2.

Fig. 5 Reduced ion density profiles, n(x)/n ° , for a 1:1 electrolyte at c = 1M and o° = 0.55.

All symbols as in Fig. 2.

Fig. 6 Reduced ion density profiles, n(x)/n', for a 1:1 electrolyte at c = 1M and a* = 0.70.

All symbols as in Fig. 2.

Fig. 7 Dimensionless mean electrostatic potential profile, elk(z)/kT, for a 1:1 electrolyte at

c = IM and a* = 0.70. All symbols as in Fig. 2.

Fig. 8 Reduced ion density profiles, n(z)/n ° , for a 1:1 electrolyte at c = 2M and a* = 0.396.

All symbols as in Fig. 2.

Fig. 9 Dimensionless mean electrostatic potential profile, ei(z)/kT, for a 1:1 electrolyte at
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c 2M and a* = 0.396. All symbols as in Fig. 2.

Fig. 10 Dimensionless diffuse layer potential, ew,(O)/kT, as a function of the surface charge

density, ad2 /e,'for 2:2 electrolytes at c=0.05 and 0.5M. All symbols as in Fig. 1.

Fig. 11 Reduced ion density profiles, n(x)/n 0 , for a 2:2 electrolyte at c = 0.5M and a* =

0.1704. All symbols as in Fig. 2.

Fig. 12 Dimensionless mean electrostatic potential profile, e4(x)/kT, for a 2:2 electrolyte at

c = 0.5M and a* = 0.1704. All symbols as in Fig. 2.
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Table I. Theories of the RPM of the electrical double layer

Integral Equation Methods Density Functional Theories

B Kjellander and Marcelja Local HNC(MSA) GHRM, TRZ
Caccamo, Pizzimenti, (1985-86); Plischke and Forstmann et al. Our work
and Blum (1985-87) Henderson (1988-89) (958)(99

MPE3OZ HNC/SA)GVDW
Croxton and Mc~uarrie Quthwaite and Bhuiyan Henderson and Blum Boyle, Scriven, and Davis

(197-81 (178-8) (97785)(1986)

Modified Gouy-Chapman (MGC) (1924)]

Gouy-Chapman (GC) (1910-13)



Table II. Diffuse layer potential 'L'(0) = eg(O)/kT

or .MCa  MGC BGYb AIPB5c PHd GHRAI GVDW/ TRZ'

1:1 electrolytes

0.01M 0.10 5.05(0.05) 5.44 - 5.08 4.58 5.26 5.242 5.243
0.1M 0.30 4.63(0.03) 5.34 5.00 4.74 4.37 4.76 4.49 4 54
1.OM 0.10 1.09(0.06) 1.40 1.055 1.03 1.06 1.03 1.00 1.01

0.25 2.13(0.05) 2.79 2.31 2.10 2.22 2.18 2.01 2.05
0.42 3.08(0.10) 3.74 3.46 3.02 3.23 3.23 2.68 2.SS
0.55 4.15(0.15) 4.26 4.21 - 4.22 4.12 3.12 3.61
0.60 4.38(0.11) 4.43 4.48 - 4.68 4.52 3.29 3.96
0.70 5.71(0.14) 4.74 5.02 - 5.76 5.41 3.69 4.79

2.0M 0.396 2.29(0.09) 2.99 2.303 - 2.29 2.19 1.68 1.s

2:2 electrolytes

0.05M 0.20 1.33(0.02) 2.61 1.81 1.36 1.18 1.59 1.539 1.543
0.5M 0.1704 0.63(0.04) 1.36 0.638 0.537 0.69 0.57 0.528 0.532

a. G. M. Torrie and J. P. Vaileau, Ref. 4. Statistical uncertainty is shown in parenthesis.
b. C. Caccamo, G. Pizzimenti and L. Blum, Ref. 8; 1986.
c. C. W. Outhwaite and L. B. Bhuiyan, Ref. 7; 1986.

d M. Plischke and D. Henderson, Ref. 10; 1988.
e. L. 'Mier-y-Teran, S. H. Suh, H. S. White, and H. T. Davis, Ref. 19.
f. This work. Results of the GVDW model.
g. This work. Results of the TRZ model.
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